GreedyDual-Join: Locality-Aware Buffer Management for Approximate Join Processing Over Data Streams
نویسندگان
چکیده
We investigate adaptive buffer management techniques for approximate evaluation of sliding window joins over multiple data streams. In many applications, data stream processing systems have limited memory or have to deal with very high speed data streams. In both cases, computing the exact results of joins between these streams may not be feasible, mainly because the buffers used to compute the joins contain much smaller number of tuples than the tuples contained in the sliding windows. Therefore, a stream buffer management policy is needed in that case. We show that the buffer replacement policy is an important determinant of the quality of the produced results. To that end, we propose GreedyDual-Join (GDJ) an adaptive and locality-aware buffering technique for managing these buffers. GDJ exploits the temporal correlations (at both long and short time scales), which we found to be prevalent in many real data streams. We note that our algorithm is readily applicable to multiple data streams and multiple joins and requires almost no additional system resources. We report results of an experimental study using both synthetic and real-world data sets. Our results demonstrate the superiority and flexibility of our approach when contrasted to other recently proposed techniques.
منابع مشابه
iJoin: Importance-Aware Join Approximation over Data Streams
We consider approximate join processing over data streams when memory limitations cause incoming tuples to overflow the available space, precluding exact processing. Selective eviction of tuples (loadshedding) is needed, but is challenging since data distributions and arrival rates are unknown a priori. Also, in many real-world applications such as for the stock market and sensor-data, differen...
متن کاملAnalytical and Experimental Evaluation of Stream-based Join
Continuous queries over data streams have gained popularity as the breadth of possible applications, ranging from network monitoring to online pattern discovery, have increased. Joining of streams is a fundamental issue that must be resolved to enable complex queries over multiple streams. However, as streams can represent potentially infinite data, it is infeasible to have full join evaluation...
متن کاملA Stream Database Server for Sensor Applications
We present a framework for stream data processing that incorporates a stream database server as a fundamental component. The server operates as the stream control interface between arrays of distributed data stream sources and end-user clients that access and analyze the streams. The underlying framework provides novel stream management and query processing mechanisms to support the online acqu...
متن کاملProcessing Data-Stream Join Aggregates Using Skimmed Sketches
There is a growing interest in on-line algorithms for analyzing and querying data streams, that examine each stream element only once and have at their disposal, only a limited amount of memory. Providing (perhaps approximate) answers to aggregate queries over such streams is a crucial requirement for many application environments; examples include large IP network installations where performan...
متن کاملProcessing Exact Results for Queries over Data Streams
In a growing number of information-processing applications, such as network-traffic monitoring, sensor networks, financial analysis, data mining for e-commerce, etc., data takes the form of continuous data streams rather than traditional stored databases/relational tuples. These applications have some common features like the need for real time analysis, huge volumes of data, and unpredictable ...
متن کامل